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Abstract
A formalism based on non-local dielectric response theory and Green function
techniques has been developed to describe the interaction of quantum well
excitons with an evanescent optical wave of a planar waveguide. Reflection
spectra of a system in which a quantum well placed behind a dielectric interface
at which light experiences total internal reflection have been calculated. It is
shown that the spectral feature corresponding to the exciton resonance becomes
much more pronounced if the angle of incidence is close to the critical angle
of total internal reflection. The concept of a generalized Snell law has been
applied to provide simplification of the formalism.

1. Introduction

The waveguiding regime of light propagation is very widely studied in the context of optical
fibres, laser resonators, and other different kinds of conventional optoelectronic devices. How-
ever, a new generation of optoelectronic devices is now being discussed: namely, polariton
devices that exploit the coupling of light with excitons, which are the elementary excitations of
semiconductor crystals. Exciton–polaritons combine the properties of electromagnetic modes
(high group velocities, large coherence lengths) and excitons (finite effective masses, dipole
moments, coupling by exchange interaction). Also, their bosonic nature suggests that it should
be possible to form a Bose condensate which would result in spontaneous emission of coherent,
monochromatic light, which is currently referred to as the polariton laser effect [1–3]. One of
the main obstacles on the way towards realization of polariton devices is the finite radiative life-
time of these half-light–half-matter quasiparticles. Polaritons with small in-plane wavevectors
have a lifetime of only a few picoseconds, which makes any manipulations with them difficult.
On the other hand, polaritons having in-plane wavevectors kx > ω/c, where ω is their angular
frequency, propagate in the waveguiding regime and have a much longer (theoretically, infi-
nite) lifetime. Clearly, these long-lived polaritons are more suitable for device applications.
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Further, they can be excited using a prism or a diffraction grating, and detected in the same
way as light. It is essential to model the propagation of waveguided polariton modes correctly
and to calculate the in-plane and normal electric field profiles induced in the structure by them.

This paper presents a semi-classical formalism describing the optical properties of the
waveguided polariton modes in the framework of the generalized transfer matrix technique.
We focus especially on the states situated at the edge of the light-cone (i.e. having kx ≈ ω/c)
and show that light coupling with the quantum well exciton resonance is greatly enhanced
for these modes, and the reflectivity of quantum wells measured via a prism at the light-cone
edge exhibits extremely strong resonant features. Popov et al [4] have recently published a
theoretical paper on the exciton–polaritons at the light-cone edge. However, their work did
not focus on reflection from a quantum well in the waveguiding regime, which is the main
subject of interest in this paper. The aim of the present work is to investigate the interaction
of a quantum well exciton with an evanescent electromagnetic field in a quantum well placed
behind an interface at which light experiences total internal reflection or situated in the cladding
layer of a planar optical waveguide.

2. Total internal reflection at a dielectric interface

Consider an interface normal to the z-direction between two dielectric media (labelled 1 and
2) having refractive indices n1 and n2, respectively, where n1 > n2. Let a plane light wave of
angular frequency ω be incident on medium 2 from medium 1 at an angle of incidence θ in
the x–z plane. When θ exceeds the critical value θc defined by the equation

sin θc = n2

n1
, (1)

total internal reflection takes place with the amplitude of the electromagnetic wave decaying
exponentially in medium 2 and the reflection coefficient becoming equal to unity. Also, at this
critical angle of incidence, the component of the wavevector k perpendicular to the interface
becomes imaginary in medium 2, and there the spatial variation of the electric field E is
described by

E ∝ exp(−χz) exp(ikx x), (2)

where

kz = iχ,

k2
x − χ2 = k2,

k = n2
ω

c
,

(3)

and c is the velocity of light in a vacuum.
Formally, such an electromagnetic field can be considered as a plane wave propagating in

the direction defined by the complex angle θ2

θ2 = −i ln
(
ib +

√
1 − b2

)
, (4)

where b = (n1/n2) sin θ1.
Equation (4) is a generalized form of Snell’s law, and it gives a proper mathematical

description of the electromagnetic field in the case of total internal reflection. It is also valid
in absorbing and left-handed materials [5]. Bearing in mind equation (4), one can write

kz = iχ = k cos θ2, (5)

where the cosine of the angle of refraction is seen to be purely imaginary.
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3. Reflections and transmission at a quantum well close to the excitonic resonance

3.1. Solution of the inhomogeneous wave equation

The electromagnetic field in the vicinity of the quantum well (QW) in the spectral region near
the QW exciton resonance, ω0, is described by the wave equation

∇ × ∇ × E − εbk2
0E = 4πk2

0Pexc, (6)

where the right-hand term accounts for the excitonic contribution to the dielectric polarization
Pexc and εb is the background dielectric constant in the QW and surrounding barrier material
(assumed to be equal for simplicity). According to the theory of non-local dielectric
response [6], the polarization Pexc can be written as

Pexc(z) = 1

4π

∫
T̃ (ω, z, z′)E(z′) dz ′, (7)

where the non-local dielectric susceptibility is given by T̃ (ω, z, z′) = T (ω)�(z)�(z′), the
function �(r) is proportional to the envelope of the exciton wavefunction taken with equal
electron and hole coordinates �(r, r′): �(r) = 1√

S
�(r, r) and

T (ω) = εbωLTπa3
B

ω0 − ω − i�
. (8)

Here, ωLT and aB are respectively the longitudinal–transverse splitting and the Bohr radius of
the exciton in the bulk material, and � is the non-radiative exciton damping.

In the presence of a QW, the wave equation can be solved within non-local dielectric
response theory by a Green function method [1, 6]. The electric field E(r) can be represented
in the form

E(r) = E0 + Ẽ, (9)

where E0 is the solution to the homogeneous counterpart of equation (6) and Ẽcan be expressed
in terms of the Green function Gαβ as

Ẽα(r) = k2
0 T �β

∫
Gαβ(x, z − z′)�(z′) dz ′, (10)

where α, β = x, y, z,�β = ∫
�(z)Eβ(z) dz and

Gαβ(r) =
(

δαβ +
1

k2

∂2

∂rα ∂rβ

)
Ḡ(x, z − z ′) (11)

is the Green function.

3.2. Propagating waves

Normally we are interested in the interaction of propagating waves with the QW. For a
propagating wave, the homogeneous solution E0 is a plane wave having the form E0

α exp(ikzz +
ikx x), and the Green function is given by

Ḡ(x, z − z ′) = i

2kz
exp(ikz |z − z′| + ikx x). (12)

Multiplying the left- and right-hand sides of equation (10) by �(z) and integrating over z, we
can obtain the electric field [6]. Denoting

�0 = k

2
kωLTπa3

B

(∫
�(z) cos kzz dz

)2

, (13)
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the reflection and transmission coefficients of the QW for TE-polarized light (with electric
field E = (0, Ey, 0)) can be expressed as

rQW = i�̃0

ω0 − ω − i(� + �̃0)
(14)

tQW = 1 + rQW, (15)

where

�̃0 = �0/cos θ (16)

is the exciton radiative broadening, and

ω̃0 = ω0 +
k2

2kz
ωLTπa3

B

∫ ∫
�(z)�(z′) sin kz|z − z′| dz dz ′ (17)

is the renormalization of the resonance frequency due to the polariton effect.
Similar expressions can be found for the reflection and transmission coefficients in TM

polarization (with electric field E = (Ex, 0, Ez)):

rQW = i�̃′
0

ω̃′
0 − ω − i(� + �̃′

0)
− i�̃′′

0

ω̃′′
0 − ω − i(� + �̃′′

0 )
(18)

tQW = 1 +
i�̃′

0

ω̃′
0 − ω − i(� + �̃′

0)
+

i�̃′′
0

ω̃′′
0 − ω − i(� + �̃′′

0 )
, (19)

where

�̃′
0 = �0 cos θ, (20)

ω̃′
0 = ω0 +

kz

2
ωLTπa3

B

∫ ∫
�(z)�(z′) sin kz|z − z′| dz ′ dz, (21)

�̃′′
0 = �0 sin2 θ/ cos θ, (22)

ω̃′′
0 = ω0 +

k2
x

2kz
ωLTπa3

B

∫ ∫
�(z)�(z′) sin kz|z − z′| dz ′ dz + ωLTπa3

B

∫
[�(z)]2 dz. (23)

The exciton polaritons’ eigenfrequencies are given by the poles of rQW (equations (14)
and (18)).

3.3. Evanescent wave solutions

In the case of a QW placed behind a dielectric interface at which total internal reflection
occurs, it is possible to have an evanescent wave interact with a QW. Although now there are
only evanescent fields, it is still convenient to define reflection and transmission coefficients
in a formal mathematical fashion, even though they may be regarded in the physical sense
as a ‘figure of speech’. For the purpose of developing the theory we consider the somewhat
artificial case where an ‘incident’ evanescent wave field exists in the absence of a dielectric
interface. The reflection coefficient is then introduced as the ratio of the amplitude of the
wave decaying to z = +∞ (incident field) to the amplitude of the wave decaying to z = −∞
(reflected field) far to the left from the QW.

The basic equations used for solving the wave equation (6) are similar to before, but the
Green function is now

Ḡ(x, z − z ′) = 1

2χ
exp[−χ |z| + ikx x], (24)
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and the solution to the homogeneous wave equation is an evanescent plane wave having form
E0

α exp(−χz) exp(ikx x).
For the TE-polarization case, the electric field obeys the equation

Ey(z) = E0,ye−χ z + k2
0 T �y

∫
�(z′)Ḡ(z − z′) dz ′, (25)

and for the TM-polarization case, the non-zero components of electric field satisfy the equations

Ex(z) = E0,x e−χ z − k2
0 T �x

χ2

k2

∫
�(z′)Ḡ(z − z ′) dz ′ + i

kx

k2
k2

0 T�z

×
∫

�(z′)
∂

∂z
Ḡ(z − z ′) dz ′ (26)

Ez(z) = E0,ze−χ z + i
kx

k2
k2

0 T�x

∫
�(z′)

∂

∂z
Ḡ(z − z′) dz ′ +

k2
x

k2
k2

0 T�z

×
∫

�(z′)Ḡ(z − z′) dz ′ − 1

k2
k2

0 T�z�(z). (27)

Then the quantities �α are explicitly found by multiplying the electric field projections by the
function �(z) and integrating over z. Hence, defining L = ∫ ∫

�(z)�(z′)Ḡ(z − z′) dz dz ′,

�y = E0,y
∫

�(z)e−χ z dz

1 − k2
0 T L

, (28)

�x = E0,x
∫

�(z)e−χ z dz

1 + k2
0 T χ2

k2 L
, (29)

�z = E0,z
∫

�(z)e−χ z dz

1 − k2
x

k2 k2
0 T L + 1

k2 k2
0 T

∫
[�(z)]2 dz

. (30)

In order to obtain the reflection coefficient, we must have the ratio of the amplitude of the left-
decaying wave (coefficient of e+χ z) to the amplitude of the right-decaying wave (coefficient
of e−χ z) at z → −∞. The transmission coefficient is similarly found from the ratios of the
right-decaying waves (coefficients of e−χ z) at each side of the QW.

Defining (compare equation (13))

�e0 = k

2
ωLTπa3

B

(∫
�(z) cosh χz dz

)2

, (31)

we express the ‘reflection’ and ‘transmission’ coefficients for the TE polarization as

rQW = �̃e

ω̃0 − �̃e − ω − i�
, (32)

tQW = 1 +
�̃e

ω̃0 − �̃e − ω − i�
= 1 + rQW, (33)

respectively. Here

�̃e = k

χ
�e0, (34)

ω̃0 = ω0 − k2

2χ
ωLTπa3

B

∫ ∫
�(z)�(z′) sinh χ |z − z′| dz dz ′. (35)

The reflection and transmission coefficients for the TM polarization are, respectively

rQW = − �̃′
e

ω̃′
0 − �̃′

e − ω − i�
− �̃′′

e

ω̃′′
0 − �̃′′

e − ω − i�
= r1 − r2, (36)
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tQW = 1 − �̃′
e

ω̃′
0 − �̃′

e − ω − i�
+

�̃′′
e

ω̃′′
0 − �̃′′

e − ω − i�
= 1 + r1 + r2, (37)

where

�̃′
e = χ

k
�e0, (38)

ω̃′
0 = ω0 +

χ

2
ωLTπa3

B

∫ ∫
�(z)�(z′) sinh χ |z − z′| dz ′ dz, (39)

�̃′′
e = k2

x

χk
�e0, (40)

ω̃′′
0 = ω0 − k2

x

2χ
ωLTπa3

B

∫ ∫
�(z)�(z′) sinh χ |z − z′| dz ′ dz + ωLTπa3

B

∫
[�(z)]2 dz. (41)

The exciton polariton eigenenergies are given by the poles of rQW for the TE case (equation (32))
and TM case (equation (36)). Thus the transverse (T) polariton has a resonant frequency ω̃0,
and a width given by the non-radiative damping �. Likewise, the L- and Z-polaritons have
resonant frequencies of ω̃′

0 and ω̃′′
0 , respectively.

It is apparent from equations (32) and (36) that, in the evanescent field case, there is
no radiative damping of the exciton, in contrast to the case when a freely propagating wave
is incident upon the QW. Mathematically, this is because in the denominator the quantity
corresponding to �̃e becomes real in the case of evanescent waves and contributes only to the
resonance frequency renormalization.

This result can also be easily understood from a physical point of view. The radiative
damping in the propagating wave case exists because the photons can propagate infinitely
far away from the QW plane. However, in the evanescent wave case, light is no longer free
to propagate in the direction out of the plane of the QW, and therefore the radiative exciton
damping is zero. Consequently, surface exciton–polaritons are ‘dark’, as they have an infinite
radiative lifetime [7].

Note that, if the angle of incidence corresponds to the critical angle of total internal
reflection (e.g. kz → 0 or χ → 0), so that the polariton state is at the edge of the light-cone,
the reflection coefficients for the cases of propagating (14) and evanescent (32) waves coincide
and are both equal to −1.

Normally the electric field does not vary significantly over the distance that �(z) decays
exponentially to an insignificant value, and hence �e0 ≈ �0. Using equation (5) and replacing
�e0 with �0 in equations (31), (38) and (40), we find that to a good approximation one can
use equations (14) and (18) with a complex value for the angle of propagation in the medium,
instead of equations (32) and (36).

4. Generalized transfer matrix

In a basis of left- and right-decaying evanescent waves, the transfer matrix relating the electric
field on either side of the quantum well is identical to the well-known one for propagating
waves [1]:

T = 1

tQW

(
t2
QW − r2

QW rQW

−rQW 1

)
. (42)

When a complex angle is used, the matrix in the basis of tangential components of electric and
magnetic fields is identical to the one used for propagating waves. For example, the matrix in
the TE polarization is

T̂i =
(

1 0
−2n cos θ r

1+r 1

)
. (43)



Interaction of quantum well excitons with evanescent plane electromagnetic waves 3407

Figure 1. A profile of an envelope of the electric field in the case of total internal reflection of the
incident light at the interfaces between the media having refractive indices n1 and n2. A quantum
well is placed behind the interface.

Such results are significant because they mean that transfer matrix methods which facilitate
the calculation of the transmission and reflection spectra of the layered structures can be used
to consider the interaction of evanescent electromagnetic waves with the QW.

For the structure shown in figure 1, the amplitude reflection coefficient R can be easily
expressed in terms of the amplitude reflection coefficients ri and rQW of the interface between
the media 1 and 2 and of the quantum well, respectively:

R = ri + rQW exp(−χd)

1 + rirQW exp(−χd)
, (44)

where d is the distance between the interface and the nearest edge of the quantum well.
Figure 2 shows some reflection spectra of TE-polarized light for the structure shown in

figure 1. The parameters of the structure are chosen to correspond to an experimentally feasible
III–V heterostructure. The refractive indices n1 = 3.7 and n2 = 3.0 correspond to GaAs and
AlAs, respectively, and the critical angle of total internal reflection for the interface, given by
equation (1), is θc = 54.176◦. The parameters of the quantum well are chosen to be those
of an InGaAs quantum well of thickness 50 nm, with h̄ω0 = 0.9 eV, h̄�0 = 0.05 meV, and
h̄� = 1 meV. The distance between the interface and the quantum well is taken as d = 100 nm.
Substantial angles of incidence on the GaAs/AlAs interface can be achieved by using a prism
or diffraction grating on the external boundary of the sample.

It follows from equations (16) and (34), that the interaction of light and a quantum
well exciton is enhanced dramatically if the angle of incidence is close to the critical
value θc. Figure 2 shows that if the incidence angle θ is much less than θc, the reflection
spectrum is represented by the usual type of resonant curve with a relatively small magnitude
modulation [8]. However, an increase of θ leads to a growth of the modulation, and the shape
of the spectrum changes substantially. When θ becomes close to θc, the background reflectivity
tends to unity and the Lorentzian dip appears at the frequency of the exciton resonance. Note
that the position of the dip corresponds to the exciton resonance frequency ω0, despite the fact
that the pole in rQW (equation (32)) is shifted from ω0 by �̃e, which itself is quite large if the
incidence angle is close to θc. A subsequent increase of the incidence angle leads to a decrease
of the depth of the excitonic dip.
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Figure 2. Reflection spectra of the structure shown in figure 1. (a) For incidence angles equal to
the critical angle and exceeding it: 54.18◦; 54.5◦; 56◦; 60◦; (b) for incidence angles below the
critical angle: 54.17◦; 54◦; 53◦; 52◦; 51◦ , 45◦.

Note that if θ is exactly equal to the critical value θc, the relative depth of the excitonic dip
exceeds 50% for the chosen parameters, despite the non-radiative damping of the exciton being
20 times stronger than its radiative counterpart. Such amplification of the excitonic modulation
of reflection spectra makes the spectroscopy of quantum well excitons in the geometry of total
internal reflection a promising tool for the precise determination of excitonic parameters.

5. Conclusions

We have developed a semi-classical formalism providing a description of the interaction of
a quantum well exciton with an evanescent optical wave in the waveguiding regime. We
have considered structures having a quantum well placed behind an interface at which light
experiences total internal reflection or in the cladding layer of a planar waveguide. We have
obtained an exact solution of Maxwell equations in the TE- and TM-polarizations and have
given simplified expressions for the effective reflection and transmission coefficients of the
QW using a generalized form of Snell’s law. We have shown that if the angle of incidence is
equal to the critical angle of total internal reflection, the excitonic resonance in the reflection
spectrum becomes more pronounced and is an order of magnitude greater than in the normal
incidence case.



Interaction of quantum well excitons with evanescent plane electromagnetic waves 3409

Acknowledgments

This work has been supported by the Marie-Curie Training Site contract HPMT-CT-2000-
00191 and EPSRC research grant.

References

[1] Kavokin A V and Malpuech G 2003 Cavity Polaritons (Amsterdam: Elsevier) ISBN: 0-125-33032-4
[2] Imamoglu A and Ram J R 1996 Phys. Lett. A 214 193
[3] Deng H, Weihs G, Santori C, Bloch J and Yamamoto Y 2002 Science 298 199
[4] Popov V V, Teperik T V, Horing N J M and Bagaeva T Yu 2003 Solid State Commun. 127 589
[5] Veselago V G 1968 Sov. Phys.—Usp. 10 509
[6] Ivchenko E L and Kavokin A V 1992 Sov. Phys.—Solid State 34 1815
[7] Andreani L C 1994 Confined Excitons and Photons: New Physics and Devices ed E Burstein and C Weisbuch (New

York: Plenum)
[8] Ivchenko E L, Kop’ev P S, Kochereshko V P, Uraltsev I N, Yakovlev D R, Ivanov S V, Meltser B Y and

Kaliteevski M A 1988 Sov. Phys.—Semicond. 22 495


